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Modified renormalization strategy for sandpile models
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Following the renormalization-group scheme recently developed by Pietroneroet al. @Phys. Rev. Lett.72,
1690~1994!# we introduce a simplifying strategy for the renormalization of the relaxation dynamics of sandpile
models. In our scheme, five subcells at a generic scaleb form the renormalized cell at the next larger scale.
Now the fixed point has a unique nonzero dynamical component that allows for a great simplification in the
computation of the critical exponentz. The values obtained are in good agreement with both numerical and
theoretical results previously reported.@S1063-651X~99!06112-7#

PACS number~s!: 64.60.Ak, 02.50.2r, 05.40.2a, 05.65.1b
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The concept of self-organized criticality~SOC! intro-
duced by Bak, Tang, and Wiesenfeld~BTW! @1# has at-
tracted wide interest to understand a class of dynamic
driven systems which self-organize into a statistically s
tionary state characterized by the lack of any typical time
length scale. Numerical results for systems displaying S
behavior have been extensively reported@2,3#, but only a few
theoretical approaches are known to be in agreement
numerical simulations in all dimensions. The major source
difficulties in the study of SOC systems lies in their inhere
complexity, which makes the models analytically tracta
only in a few cases. The Abelian version of the BTW san
pile model, addressed earlier by Dhar@4#, turned out to be
one of these exceptions.

Recently, Pietronero, Vespignani, and Zapperi@5# devel-
oped a new type of real-space renormalization-group
proach for dynamically driven systems, able to describe
self-organized critical state of sandpile models by definin
characterization of the phase space in which the renorma
tion of the dynamics under repeated change of scale is
sible. In addition, it is also possible to compute the critic
exponents analytically@6#. The method also reveals the n
ture of the SOC problems and provides a picture about
universality classes of different sandpile models. T
scheme of renormalization has been recently improved
considering increasingly complex proliferation paths@7,8#
and extended to forest-fire models@9–11#.

In this Brief Report, we follow the renormalization pro
cedure of Refs.@5,6# but using a Greek cross-shaped c
instead of a square cell in the renormalization of the rel
ation dynamics. The critical exponents that characterize
stationary state are then computed and they are found t
in good agreement with previous theoretical results a
large-scale numerical simulations both for the BTW a
two-state model of Manna. We will see that the use of t
particular choice of cells simplifies the renormalization eq
tions for the BTW model.

In what follows, we will focus on the sandpile critica
height models in two dimensions. Sandpile models are
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lular automatons defined on a lattice where to each site
assigns a variable~to which we will refer as energy!. We let
the system evolve by randomly adding units of energy on
system. When the energy of a site reaches a critical valu
relaxes releasing its entire energy to the neighboring si
The affected sites may become unstable, triggering new
pling events and so on until all sites are again stable. Th
different classes of sites can be distinguished:~i! those sites
for which the addition of a unit of energy does not indu
relaxation~stable sites!, ~ii ! those sites for which the additio
of a unit of energy causes them to become unstable~critical
sites!, and~iii ! unstable sites that will relax at the next tim
step. Open boundary conditions allow the energy to leave
system.

In this formalism, we will denote byr the density of
critical sites. These definitions can be extended to a gen
scaleb by considering coarse-grained variables. Thus, a
at scaleb is considered critical if the addition of a unit o
energydE(b) induces a relaxation of the size of the cell, th
is, the subrelaxation processes span the cell and transfe
ergy to some neighbors. According to@5#, the relaxation pro-
cess can lead to four different possibilities at coarse-grai
levels: the energy can be distributed to one, two, three
four neighbors with probabilitiesp1 , p2 , p3, and p4, re-
spectively. Of course, it is also possible that in certain ca
the unstable sites at the coarse-grained scale do not tra
energy to their nearest neighbors as well as to consider
ferent proliferation problems. As in@5,6#, we will not con-
sider these cases@12#. Then, the probability distribution is
defined by the vector

PW 5~p1 ,p2 ,p3 ,p4! ~1!

with the normalization condition( i 51
4 pi51.

So, the properties of the system are fully characterized
the distribution (r,PW ) at each scale. The relation betweenr

andPW can be derived by noting that in the stationary state
inflow of energy equals the flow of energy out of the syste
@13#. This implies@6#
7565 © 1999 The American Physical Society
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r (k)5
1

(
i

ip i
(k)

, ~2!

which allow us to evaluate the stationary distribution of cr
cal sites at each scalek of coarse graining.

Now, we define a renormalization transformation for t
relaxation dynamics. We will use a cell-to-site transform
tion on a square lattice, in which each cell at scaleb(k) is
formed by five subcells at the finer scaleb(k21) ~see Fig. 1!.
We have chosen this type of cell for two reasons: one,
cause it implies the use of greater cells formed by five s
cells at the finer scale, that is, when we scale up, five subc
form a new one at the larger scale; and second, one is i
itively tempted to follow the geometry of the relaxation th
takes place in numerical simulations of sandpile models w
energy transfer to north, east, south, and west neighbors@15#.

The length scaling factor is thenb(k)/b(k21)5A5 ~see Fig.
1!. Therefore, at a generic scaleb(k), each cell is character
ized by an indexa, ranging from one to five, indicating it
number of critical subcells at the smaller scaleb(k21). In
order to ensure the connectivity properties of the avalan
in the renormalization procedure, only those configuratio
with three or more subcells at scaleb(k21) can span the cell
transferring energy toi neighboring cells. Thus, the startin
relaxation processespi

(k21) at scaleb(k21) are renormalized
in the correspondent processpi

(k) at scaleb(k). Besides, it has
been shown@16# that site correlations are averaged out in t
stationary state. Therefore, taking into account this fact
the spanning rule, we can write the weight of each confi
ration a in the stationary state as

W(a53)52r3~12r!2,

W(a54)54r4~12r!, ~3!

W(a55)5r5.

FIG. 1. Greek cross-shaped cell used in the renormalization
cedure. The central subcell~encircled dot! and its four neares
neighbors~black dots! are displayed. The length scaling factor
A5.
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Equation~3! gives the probability that a cell at scaleb(k) has
the corresponding number of critical subcells at scaleb(k21).

As an example of the general procedure, in Fig. 2 we h
drawn a series of relaxation processesp1→p1→p2 at scale
b(k21) that contributes to the renormalization ofp1

(k) at the
larger scaleb(k), starting from a configuration ofa53 criti-
cal subcells. The process consists of the following relaxat
events that span the cell from left to right satisfying the sp
ning condition. First, the unstable subcell on the left relax
toward the other critical subcell@the center one, Fig. 2~b!#,
which occurs with probability (1/4)p1

(k21) , where the index
(k21) denotes that the relaxation takes place at sc
b(k21). Second, we consider the process in which the n
unstable subcell also relaxes toward the subcell on the r
through anotherp1 process@Fig. 2~c!#, which again happens
with a probability (1/4)p1

(k21) . Finally, the subcell on the
right has become unstable and transfers with probab
(2/3)p2

(k21) two units of energy, one inside and one outsi
the original cell of sizeb(k) @Fig. 2~d!#. The series of pro-
cesses described contributes to the renormalization ofp1

(k) .
Nevertheless, it is necessary to note that the relaxations
played in Figs. 2~a!–2~d! are not all the processes that co
tribute to the renormalization ofp1

(k) through a p1→p1

→p2 series. Figure 2~e! shows ap2 relaxation event that,
although involving two neighboring sites outside the origin
cell of sizeb(k), also contributes to the renormalization
p1

(k) with probability (1/6)p2
(k21) . This is a new characteris

tic inherent to the cell-to-site transformation chosen. Now
we take into account all the processes that lead top1

(k) , for
a53, one gets

p1
(k)5

1

3 H S 1

6
p2

(k21)1
1

2
p3

(k21)1p4
(k21)D S 1

4
p1

(k21)D
3S 3

2
p1

(k21)1
4

3
p2

(k21)1
1

2
p3

(k21)D J
1

2

3 H S 1

4
p1

(k21)1
1

2
p2

(k21)1
3

4
p3

(k21)1p4
(k21)D

3S 1

4
p1

(k21)D S 3

4
p1

(k21)1
7

6
p2

(k21)1
1

2
p3

(k21)D J , ~4!

o-

FIG. 2. A series of relaxation processesp1→p1→p2. Open dots
represent stable sites, filled dots critical sites, and encircled
unstable sites. Note that the last relaxation affects only one ne
bor despite having two outward arrows~see also Fig. 1!.
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where in Eq.~4! the factors1
3 and 2

3 refer to the multiplicities
of the configurations~see Fig. 3!.

In a similar way~though much more complicated!, one
obtains expressions forpi

(k) ( i 52,3,4) for a53 and im-
poses the normalization condition( i 51

4 pi
k51. The proce-

dure is repeated taking into account the configurations w
a54 anda55 critical sites and the renormalized probabi
ties at levelk are finally derived by averaging over the co
figurations of differenta values including their statistica
weights Wa(r (k21)). Therefore, the probabilitiespi

(k) at
length scaleb(k) will be given by

pi
(k)5 (

a53

5

Wa~r (k21)!pi
(k21)~a! ~5!

with Wa(r (k21)) and r (k21) given by Eq.~3! and Eq.~2!,
respectively. As the computation of the probabilitiespi

(k) in
Eq. ~5! is rather lengthy and cumbersome, we have dev
oped a C code to compute all the polynomial term coe
cients that contribute to the renormalization transformatio

Now, we proceed to explore the scale-invariant behav
of the model by finding the fixed-point solutionpi

(k21)

5pi
(k) . In order to do this, we start from the shortest leng

scale characterized by (r (0),pW (0)) and study how it evolves
under repeated iteration of the transformation~5!. For the
two-state model of Manna@2# the parameters (r (0),pW (0) are
(r (0),0,1,0,0), whereas for the BTW sandpile we ha
(r (0),0,0,0,1). Here, the initial value of the density of critic
sites r (0) is irrelevant for the dynamics since the syste

FIG. 3. Full set of possible initial configurations of critical site
and their multiplicitiesv. We have only depicted the configuration
that fulfill the spanning rule (a53,4,5). Thet ’s refer to the non-
contemporary time steps needed to have a relaxation that span
whole cell. The indicess and a stand for symmetric and nonsym
metric configurations.
h

l-
-
.
r

evolves to a fixed point regardless of the distribution of cr
cal sites at the small-scale dynamics.

As in Refs.@5,6#, both models have the same fixed poin
but here there is an important difference in relation to
value of the fixed point. We obtain for the fixed point th

value (r* ,pW * )5( 1
4 ,0,0,0,1), that is, in the BTW model on

starts from the fixed point. This is indeed not the case for
two-state model of Manna, for which we need to iterate E
~5! more than 20 times to reach the same fixed point.
believe that this is a consequence of our renormaliza
strategy for the relaxation dynamics and constitutes a g
simplification in the calculation of the dynamical exponentz.
In fact, we were expecting the existence of a critical fixe
point value different from that reported in Refs.@5,6# al-
though the critical exponents should be very close since t
are determined by the properties of the system at la
scales.

The exponentt that characterizes the power-law av
lanche size distribution can be obtained following the pro
dure of @6#. Consider the probabilityKb(k21),b(k) that the re-
laxation processes that are active at scaleb(k21) do not
extend beyond the larger scaleb(k). This is expressed as@6#

K5

E
b(k21)

b(k)

P~r !dr

E
b(k21)

`

P~r !dr

512S b(k)

b(k21)D 2(12t)

512~A5!2(12t).

~6!

Equation~6! also satisfies

K5p1* ~12r* !1p2* ~12r* !21p3* ~12r* !31p4* ~12r* !4.
~7!

Then, the exponentt is given by

t512
1

2

ln~12K !

ln~A5!
51.235. ~8!

This value oft is in very good agreement with the valu
obtained in@5,6# and with large-scale numerical simulation
which give t51.27 for the two-state model of Manna an
t51.29 for the BTW sandpile model@17#.

A second independent critical exponent can also be c
puted. This is the so-called dynamical exponentz that relates
the spatial scaler to the time scalet through the power law
t;r z. As pointed out in@6#, the calculation ofz could be an
enormous and laborious task because the knowledge o
fixed-point value is not sufficient and we have to know t
complete form of the renormalized dynamics. Neverthele
as we said before, the use of our larger cells in the renorm
ization transformation leads to a fixed point with a uniq
nonzero component in the vectorpW * . This constitutes a grea
simplification in the derivation of the complete structure
the renormalized dynamics. In what follows, we will deriv
at a glance the dynamical critical exponent for the BT
sandpile model. In order to obtain the dynamical expone
we have to calculate the average number^t& of noncontem-

the
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porary processes at scaleb(k21) needed to have a relaxatio
process at the larger scaleb(k), which is related withz
through

z5
ln^t&

lnS b(k)

b(k21)D 5
ln^t&

ln~A5!
. ~9!

In Fig. 3 we have depicted the possible starting configu
tions for the different values ofa. The time steps needed t
have a relaxation process at the larger scale are also sh
Such a simplification in the calculus is possible because
have to consider only the relaxations that contribute to
renormalization ofp4 at larger scale. As can be seen, w
need two time steps for the symmetric configurations~those
in which the initial unstable site is located at the center of
cell! and three for the nonsymmetric configurations~those in
which the initial unstable site is located in one of the critic
boundary sites of the cell!. Therefore,

^t&5
1

(
a

Wa~r!
(
a

t8~a!Wa~r!, ~10!

wheret8(a) is the weighted average of the time steps tak
into account the different additional statistical weights due
multiplicities v in each configurationa ~see Fig. 3!. Now,
evaluating Eq.~10! at the fixed point we obtain

z51.236. ~11!

The value~11! is in remarkably good agreement with th
numerical resultz51.21 @2# and with the exact valuez
et

S.

ys
-

n.
e
e

e

l

g
o

55/4 @18#. The other critical exponents can be derived fro
scaling relations@19#. Table I summarizes the values of th
critical exponents obtained for the BTW sandpile model a
those reported by previous renormalization scheme and
merical simulations.

In this Brief Report, we have introduced an alternati
renormalization strategy that simplifies the analytical deri
tion of the critical exponents that characterize the dynam
of sandpile models. By using larger cells, formed by fi
subcells of the finer scale, we obtain a fixed point with
unique nonzero dynamical component which allow us to
rive the whole form of the renormalized dynamics in a mo
direct and simple way. The values of the exponents obtai
here are in good agreement with those previously repor
Besides, as in similar analytical predictions, the two-st
model of Manna and the BTW sandpile model belong to
same universality class@20#. The results confirm the robust
ness of the renormalization-group approach.

It is a pleasure to thank A. Vespignani for stimulatin
discussions and G. Caldarelli for useful corresponden
Y.M. would like to thank the AECI for financial support.

TABLE I. Values of the critical exponents for the BTW sanpi
model (d52). We have included the values obtained from larg
scale simulations and those derived in@6#.

Method t a l z

RG @6# 1.253 1.432 1.506 1.168
Simulations@17,2# 1.29 1.38 1.44 1.21
This paper 1.235 1.38 1.47 1.236
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